首页> 外文OA文献 >Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces
【2h】

Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces

机译:具有各向异性摩擦表面的新型压电驱动粘滑执行器的研制与表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Piezoelectric actuators (PEA) hold the most promise for precision positioning applications due to their capability of producing extremely small displacements down to 10 pm (1 pm = 10-12 m) as well as their high stiffness and force output. The piezoelectric-driven stick-slip (PDSS) actuator, working on the friction-inertia concept, has the capacity of accomplishing an unlimited range of motion. It also holds the promises of simple configuration and low cost. On the other hand, the PDSS actuator has a relatively low efficiency and low loading capability, which greatly limits its applications. The purpose of this research is to improve the performance of the PDSS actuators by employing specially-designed working surfaces.The working surfaces, referred as anisotropic friction (AF) surfaces in this study, can provide different friction forces depending on the direction of relative motion of the two surfaces, and are used in this research to accomplish the aforementioned purpose. To fabricate such surfaces, two nanostructure technologies are employed: hot filament chemical vapour deposition (HFCVD) and ion beam etching (IBE). The HFCVD is used to deposit diamond on silicon substrates; and the IBE is used to etch the diamond crystalloid with a certain angle with respect to the coating surface to obtain an unsymmetrical-triangle microstructure. A PDSS actuator prototype containing the AF surfaces was developed in this study to verify the function of the AF surfaces and characterize the performance of PDSS actuators. The designed surfaces were mounted on the prototype; and the improvement in performance was characterized by conducting a set of experiments with both the normal isotropic friction (IF) surfaces and the AF surfaces, respectively. The results illustrate that the PDSS actuator with the AF surface has a higher efficiency and improved loading capability compared to the one with the IF surfaces.A model was also developed to represent the displacement of the novel PDSS actuator. The dynamics of the PEA and the platform were approximated by using a second order dynamic system. The pre-sliding friction behaviour involved was investigated by modifying the LuGre friction model, in which six parameters (Note that three parameters are used in the LuGre model) were employed to represent the anisotropic friction. By combining the PEA mechanism model, the modified friction model, and the dynamics of end-effector, a model for the PDSS actuator with the AF surface was developed. The model with the identified parameters was simulated in MATLAB Simulink and the simulation results obtained were compared to the experimental results to verify the model. The comparison suggests that the model developed in this study is promising to represent the displacement of the novel PDSS actuators with AF surfaces.
机译:压电执行器(PEA)具有精确的定位能力,因为它能够产生低至10 pm(1 pm = 10-12 m)的极小位移,并具有很高的刚度和力输出。压电驱动的粘滑(PDSS)执行器采用惯性惯性概念,具有完成无限运动范围的能力。它还具有简单配置和低成本的承诺。另一方面,PDSS致动器具有相对较低的效率和较低的负载能力,这极大地限制了其应用。这项研究的目的是通过采用特殊设计的工作表面来提高PDSS执行器的性能。工作表面(在本研究中称为各向异性摩擦(AF)表面)可以根据相对运动的方向提供不同的摩擦力两个表面中的一个,并且在本研究中用于实现上述目的。为了制造此类表面,采用了两种纳米结构技术:热丝化学气相沉积(HFCVD)和离子束蚀刻(IBE)。 HFCVD用于在硅基板上沉积金刚石; IBE用于相对于涂层表面以一定角度刻蚀金刚石晶体,以获得不对称三角形的微观结构。在这项研究中开发了包含AF表面的PDSS执行器原型,以验证AF表面的功能并表征PDSS执行器的性能。设计好的表面被安装在原型上。并且通过分别对法向各向同性摩擦(IF)表面和AF表面进行一组实验来表征性能的提高。结果表明,与具有IF表面的PDSS致动器相比,具有AF表面的PDSS致动器具有更高的效率和更高的负载能力。还开发了一个模型来表示新型PDSS致动器的位移。 PEA和平台的动力学是通过使用二阶动力学系统来近似的。通过修改LuGre摩擦模型研究了涉及的滑动前摩擦行为,其中使用六个参数(注意在LuGre模型中使用了三个参数)来表示各向异性摩擦。通过结合PEA机理模型,改进的摩擦模型和端部执行器的动力学特性,开发了带有AF表面的PDSS执行器模型。在MATLAB Simulink中对具有确定参数的模型进行仿真,并将获得的仿真结果与实验结果进行比较,以验证模型。比较表明,本研究开发的模型有望代表具有AF表面的新型PDSS执行器的位移。

著录项

  • 作者

    Zhang, Qingshu;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号